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Rocky I: The universe observed 
Rocky II: The growth of cosmological structure
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Rocky II: Growth of structureRocky Rocky IIII: Growth of structure: Growth of structure
• Linear regime: quantative analysis

Jeans analysis
Sub-Hubble-radius perturbations (Newtonian)
Super-Hubble-radius perturbations (GR)
Harrison-Zel’dovich spectrum
Dissipative processes
The transfer function
Linear evolution

• Non-linear regime: word calculus
Comparison to observations
A few clouds on the horizon



Growth of small perturbationsGrowth of small perturbationsGrowth of small perturbations
Today (12 Gyr AB)

• radiation and matter decoupled 

•
•

5~ 10T T −∆
6~ 10G Gρ ρ +∆

Before recombination  (300 kyr AB)
• radiation and matter decoupled  

•

•

5~ 10T T −∆
5~ 10G Gρ ρ −∆
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Oxford English Dictionary



Power spectrumPower spectrumPower spectrum
• Assume there is an average density

• Expand density contrast          in Fourier modes

• Autocorrelation function defines power spectrum
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Jeans analysis in a non-expanding fluid:

Jeans analysisJeans analysisJeans analysis

Perturb about solution*
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Jeans analysisJeans analysisJeans analysis
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the form
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ω real:           perturbations oscillate as sound waves
ω imaginary: exponentially growing (or decaying) modes
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• Solution is some sort of Bessel function: 
growth or oscillation depends on Jeans criterion

• In matter-dominated era
• For wavenumbers less than Jeans 
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Sub-Hubble-radius (RH=H-1)SubSub--HubbleHubble--radius --1radius (R(RHH=H=H 1))
Jeans analysis in an expanding fluid:
scale factor a(t) describes expansion,
unperturbed solution:*



Super-Hubble-radius (RH=H-1)SuperSuper--HubbleHubble--radius radius (R(RHH=H=H--11))
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• complete analysis not for the faint of heart
• interested in “scalar” perturbations
• fourth-order differential equation 
• only two solutions “physical”
• other two solutions are “gauge modes” 
which can be removed by a coordinate 
transformation on the unperturbed metric



Bardeen 1980
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Bardeen 1980
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Perturbed spacetime (10 degrees of freedom):



reference flat spatial
hypersurfaces
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scalar, vector, tensor decompositionscalar, vector, tensor decomposition
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10

evolution of scalar, vector, and tensor
perturbations decoupled



Vector Perturbations:Vector Perturbations:Vector Perturbations:
• are not sourced by stress tensor
• decay rapidly in expansion

Tensor Perturbations:Tensor Perturbations:Tensor Perturbations:
• perturbations of transverse, traceless component of the   
metric: gravitational waves

• do not couple to stress tensor

Scalar PerturbationsScalar PerturbationsScalar Perturbations
• couple to stress tensor
• density perturbations!



Super-Hubble-radiusSuperSuper--HubbleHubble--radiusradius
in synchronous gauge            
and uniform Hubble flow gauge
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• in matter-dominated era

• in radiation-dominated era
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Harrison-Zel’dovich HarrisonHarrison--Zel’dovich Zel’dovich 

( )( ) ( )        scales larger than Hubble radius
( ) constant            scales smaller than Hubble radius
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Harrison-Zel’dovich HarrisonHarrison--Zel’dovich Zel’dovich 
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“flat” spectrum ∆2(k)=k3P(k)∼const

ultrav
   ( )     1                 ( )     1  

 catastrophe     catastroph        inio fr edlet ear

n nP k k n P k k n∝ > ∝ <

log k

log δ

kH

log k

log δ

kH



Harrison-Zel’dovich HarrisonHarrison--Zel’dovich Zel’dovich 
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• in radiation-dominated era
no growth sub-Hubble radius
growth as t super-Hubble radius  

“flat” spectrum ∆2(k)=k3P(k)∼const
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• in matter-dominated era
power spectrum grows as
t2/3 on all scales



Power spectrum for CDMPower spectrum for CDMPower spectrum for CDM
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Dissipative processesDissipative processesDissipative processes
1. Collisionless phase mixing – free streaming

If dark matter is relativistic or semi-relativistic particles can 
stream out of overdense regions and smooth out 
inhomogeneities.  The faster the particle the longer its free-
streaming length.
Quintessential example: eV-range neutrinos



The evolved spectrumThe evolved spectrumThe evolved spectrum



Dissipative processesDissipative processesDissipative processes
1. Collisionless phase mixing – free streaming

If dark matter is relativistic or semi-relativistic particles can 
stream out of overdense regions and smooth out 
inhomogeneities.  The faster the particle the longer its free-
streaming length.
Quintessential example: eV-range neutrinos

2. Collisional damping – Silk damping
As baryons decouple from photons, the photonmean-free 
path becomes large.  As photons escape from dense 
regions, they can drag baryons along, erasing baryon 
perturbations on small scales.
Baryon-photon fluid suffers damped oscillations.



The evolved spectrumThe evolved spectrumThe evolved spectrum



Linear evolutionLinear evolutionLinear evolution

z=1000

z=100

z=10

today



Linear evolutionLinear evolutionLinear evolution

z=1000z=100z=10today
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Life ain’t linear!Life Life ain’t ain’t linear!linear!
• Many scales become nonlinear at about the same time
• Mergers from many smaller objects while larger 

scales form
• N-body simulations for dissipation-less dark matter
• Hydro needed for baryons
• Power spectrum well fit if Γ = Ωh ~ 0.2 
• There is more to life than the power spectrum 

Alex Szalay
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Small-scale structure-cuspsSmallSmall--scale structurescale structure--cuspscusps

Moore et al.



Moore et al.

14Cluster  5 10

2 Mpc

M×

12Galaxy  2 10

300 kpc

M×

Small-scale structure-satellites SmallSmall--scale structurescale structure--satellites satellites 



Rocky II: Growth of structureRocky Rocky IIII: Growth of structure: Growth of structure
• Linear regime: quantative analysis

Jeans analysis
Sub-Hubble-radius perturbations (Newtonian)
Super-Hubble-radius perturbations (GR)
Harrison-Zel’dovich spectrum
Dissipative processes
The transfer function
Linear evolution

• Non-linear regime: word calculus
Comparison to observations
A few clouds on the horizon
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